What Is Consciousness? The Scientific Pursuit of Consciousness

Scientific Pursuit of Consciousness

What happens to consciousness if parts of the cerebellum are lost to a stroke or to the surgeon’s knife? Very little! Cerebellar patients complain of several deficits, such as the loss of fluidity of piano playing or keyboard typing but never of losing any aspect of their consciousness. They hear, see and feel fine, retain a sense of self, recall past events and continue to project themselves into the future. Even being born without a cerebellum does not appreciably affect the conscious experience of the individual.

All of the vast cerebellar apparatus is irrelevant to subjective experience. Why? Important hints can be found within its circuitry, which is exceedingly uniform and parallel (just as batteries may be connected in parallel). The cerebellum is almost exclusively a feed-forward circuit: one set of neurons feeds the next, which in turn influences a third set.

There are no complex feedback loops that reverberate with electrical activity passing back and forth. (Given the time needed for a conscious perception to develop, most theoreticians infer that it must involve feedback loops within the brain’s cavernous circuitry.) Moreover, the cerebellum is functionally divided into hundreds or more independent computational modules. Each one operates in parallel, with distinct, nonoverlapping inputs and output, controlling movements of different motor or cognitive systems. They scarcely interact—another feature held indispensable for consciousness.

One important lesson from the spinal cord and the cerebellum is that the genie of consciousness does not just appear when any neural tissue is excited. More is needed. This additional factor is found in the gray matter making up the celebrated cerebral cortex, the outer surface of the brain. It is a laminated sheet of intricately interconnected nervous tissue, the size and width of a 14-inch pizza. Two of these sheets, highly folded, along with their hundreds of millions of wires—the white matter—are crammed into the skull. All available evidence implicates neocortical tissue in generating feelings.

Related: 8 Mystical Meditation Mantras That Will Raise Your Consciousness

We can narrow down the seat of consciousness even further. Take, for example, experiments in which different stimuli are presented to the right and the left eyes. Suppose a picture of Donald Trump is visible only to your left eye and one of Hillary Clinton only to your right eye. We might imagine that you would see some weird superposition of Trump and Clinton.

In reality, you will see Trump for a few seconds, after which he will disappear and Clinton will appear, after which she will go away and Trump will reappear. The two images will alternate in a never-ending dance because of what neuroscientists call binocular rivalry. Because your brain is getting an ambiguous input, it cannot decide: Is it Trump, or is it Clinton?

If, at the same time, you are lying inside a magnetic scanner that registers brain activity, experimenters will find that a broad set of cortical regions, collectively known as the posterior hot zone, is active. These are the parietal, occipital and temporal regions in the posterior part of cortex [see graphic below] that play the most significant role in tracking what we see.

Curiously, the primary visual cortex that receives and passes on the information streaming up from the eyes does not signal what the subject sees. A similar hierarchy of labor appears to be true of sound and touch: primary auditory and primary somatosensory cortices do not directly contribute to the content of auditory or somatosensory experience. Instead it is the next stages of processing—in the posterior hot zone—that give rise to conscious perception, including the image of Trump or Clinton.

More illuminating are two clinical sources of causal evidence: electrical stimulation of cortical tissue and the study of patients following the loss of specific regions caused by injury or disease. Before removing a brain tumor or the locus of a patient’s epileptic seizures, for example, neurosurgeons map the functions of nearby cortical tissue by directly stimulating it with electrodes.

Stimulating the posterior hot zone can trigger a diversity of distinct sensations and feelings. These could be flashes of light, geometric shapes, distortions of faces, auditory or visual hallucinations, a feeling of familiarity or unreality, the urge to move a specific limb, and so on. Stimulating the front of the cortex is a different matter: by and large, it elicits no direct experience.

Share on

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top