You Can’t Use 100% of Your Brain and Why That’s a Good Thing

you cant use your brain and why thats a good thing

The human brain is both intricate and mysterious, that’s why there are so many myths regarding its functions. Let us take a closer look at the capacity of the human brain, how you cannot use 100 percent of your brain, and why this is a good thing.

In Part 1 of a deep dive, we look at how much of your brain you actually use.

Key Points:

A popular claim that humans use just 10 percent of their brains is far from accurate—but that doesn't mean we use 100 percent of them, either.
Animal studies have found that more than 20 percent of neurons studied serve no identifiable purpose.
Some researchers have estimated that more than 60 percent of the brain consists of "neural dark matter," or neurons that have no apparent purpose and seem unresponsive to common stimuli.

“Animal life on earth goes back millions of years, yet most species only use three to five percent of their cerebral capacity.”—Professor Norman (Morgan Freeman) in the 2014 film Lucy

The film Lucy is famous—or maybe infamous—for advancing the idea that we humans use only a small fraction of our brain tissue. Through a variety of sci-fi inventions, the film’s namesake main character, played by Scarlett Johansson, is able to radically increase her brain usage from what it claims is a typical value under 10 percent ultimately up to 100 percent.

The “10 Percent Of The Brain Myth,” As It Is Called, Has A Long History.

And Lucy Director Luc Besson freely proclaims that his film is a fantasy based on little if any science.

The film certainly makes its own case that expanding activity beyond natural levels, let alone experiencing a 100 percent brain, comes with serious downsides, including what it portrays as increasingly ruthless behavior on the part of Johansson’s character. As we will see, there are good neuroscientific reasons to stick with our natural allotment of activity—and possibly to aim for less.

Yet many serious writers have used the film as a foil in order to debunk the 10 percent myth. They explain that, no, in fact, we use almost all of the brain, and we do so all the time. An eminent neurologist from Johns Hopkins School of Medicine was quoted in Scientific American as saying:

“We Use Virtually Every Part Of The Brain…[Most Of] The Brain Is Active Almost All The Time.”

Related: 5 Science Backed Ways To Improve Your Memory

The reality is that this claim is also inaccurate: I’ll call it the 100 percent myth. In fact, the 10 percent figure is a useful reference point for understanding how your brain works and for conceptualizing the actual patterns of activity happening in your head.

Now, it is probably true that, over time, we use more than just 10 percent of the neurons in our heads. However, the total is probably well short of 100 percent. The “probablies” here have to do with the fact that it is very difficult to make high-resolution measurements of activity in lots of neurons in an awake animal. Even non-human animals like mice are difficult to record, and in humans, the precise recording is nearly impossible.

Until recently, only a handful, a few dozen, or, more rarely, a few hundred or thousand neurons, could be measured at once with precision. However, neuroscientists are making significant progress.

In 2020, a large team led by Saskia de Vries of the Allen Institute for Brain Science published a blockbuster paper that made precise estimates of large-scale neural activity patterns in the mouse brain.

They measured activity across numerous areas of the cerebral cortex involved in vision and were able to record detailed activity in an astounding 60,000 neurons. As they recorded, the animals were able to run freely on a rotating disc. Animals were shown a variety of natural images and movies, giving a strong semblance of normal, active life for a mouse.

Related: The Three Parts Of The Mind: How It Affects Your Decisions And Your Life

Pages: 1 2 3

Daniel Graham

Daniel Graham, Ph.D., is Associate Professor of Psychological Science at Hobart and William Smith Colleges. He is the author of An Internet in Your Head, a book that proposes that we can understand the brain better if we stop thinking of it as a computer and instead see it as an internet-like communication network.View Author posts